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Capacitance-Voltage Characteristics of
Microwave Schottky Diodes

Boris Gelmont, Michael Shur, Fellow, IEEE, and Robert J. Mattauch, Fellow, IEEE

Abstract —The capacitance of small-area microwave Schottky
diodes is strongly affected by the edge effect, which is not

adequately described by existing analytical models, Based on an

analytical solution of Poisson’s equation, we calculated capaci-
tances of metal circular dots and metal stripes on the surface of
a doped semiconductor material. When the dimensions of the
dot or stripe are much larger than the depletion region, the

results are reduced to the conventional formula for a parallel.

plate capacitor. In the opposite limit, the overall capacitance is

determined by the edge effect, This edge capacitance is propor-

tional to the device periphery, with the coefficient of proportion-
ality dependent on the shape of the metal. In the most interest-

ing case of a round metal dot, the edge capacitance is given by

C = 4Ea, where e is the dielectric permittivity of the semicon-
ductor and a is the radius of the metal dot. The parallel-plate
component of the device capacitance is modulated by the ap-

plied voltage; the edge component is nearly independent of the
applied voltage. Hence, the largest capacitance modulation is
achieved iu devices with the smallest ratio of the device periph-

ery over the device area, which has the smallest edge effect. The

measured capacitances of small round GaAs Schottky barrier

diodes are in reasonable agreement with the results of our

calculation.

I. INTRODUCTION

A S device sizes are scaled down, the edge effects play

an increasingly important role in determining the

capacitance of semiconductor devices with Schottky barri-

ers [1]. At the same time, existing analytical models are

based on the equation’ for a parallel-plate capacitance

(with some corrections) and they only adequately describe

large-area devices.

Wasserstrom and McKenna [2] and Copeland [31 re-

ported the results of numerical calculations of the capaci-

tances of metal dots and stripes on a semiconductor

surface. They also proposed an analytical interpolation

formula which is valid for relatively large area devices

when the characteristic size, a, of the metal contact is

much larger than the depth of the depletion region, RI.

In this paper, we find analytical solutions for a metal

hemisphere, a metal semicylinder, a metal stripe, and a
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metal ellipsoid for a limiting case of a very small ellipsoid

(with dimensions smaller than the depth of the depletion
layer, RI). In the limiting case al, a2 >> a3, where al and

az are ellipsoid axes in the plane of the semiconductor

surface and aq is an ellipsoid axis perpendicular to the

semiconductor surface, this geometry corresponds to an

important limiting case of an elliptical metal dot on the

semiconductor surface (or a round metal dot when al =

a J. In the opposite limiting case (al, a2 << a3), thisSOhI-

tion describes a conductive needle piercing the semicon-

ductor material. Our analytical solutions allows us to

propose interpolation formulas for practical geometries of

a metal dot and a metal stripe which are accurate in lSVO

limiting cases of large and small characteristic metal sizes

(a>> RI and a ~ RI) and give reasonable results for
intermediate case when a is of the order of RI.

11, BASIC ASSUMPTIONS

We assume that the semiconductor is doped with shal-

low ionized donors with concentration Nd. The dielectric

permittivity, e, of the semiconductor is much larger than

the dielectric permittivity of vacuum. This allows us to

neglect the normal component of the electric field at Ithe

semiconductor interface.

Our calculations involve the solution of Poisson’s equa-

tion for different geometries in spherical and cylindrical

coordinate systems:

(1)

r?zu 1 du qivd
—-+;%’——
dr2

(2)
e“

Here U is the electric potential and q is the electronic

charge, Once Poisson’s equations are solved, we can find

the total charge in the depletion layer, Q. The voltage

drop across the depletion region is given by

U,= U(R1) - U(a) (3)

where RI is the radius of the depletion region, r is the

distance from the center of the contact, a is the radius of

the hemisphere, and U(a) is the semiconductor potential

at the boundary with the metal. (We choose U(a) a!s a
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reference point, i.e., U(a) = O).) ‘The applied bias is given

by

v apphed = Vbi – U~ (4)

where Vbi is the built-in voltage of the Schottky barrier (a

positive sign of V,Ppl,.~ -corresponds to the forward bias).

111. CAPACITANCE OF A HEMISPHERICAL

SCHOTTKY DIODE

For a spherical Schottky diode, the depletion layer is a

hemisphere. Integrating (1) and taking into account that

dU/dr 1,=~1 = O, we find the potential distribution in the

depletion layer:

U=qN~(a2–r2 –2R~/r+2R~/a)/( 6e). (5)

From (5), we find the voltage drop across the depletion

layer:

Ul= qN~a2(~ –1)2(2x +1)/(6e) (6)

where x = RI/a. The total charge in the depletion layer

is equal to

Q = 2mqNd(R~- a3)/3. (7)

Hence, the device capacitance, C,, can be calculated as

follows:

C,= (dQ/dR1)/(dU1/dR1) = 2meaR1/(R1 – a). (8)

This expression is identical to the expression for a capaci-

tance of two hemispherical electrodes of radii a and RI

separated by a dielectric. The presence of the depleted

donors does not change the formula for the capacitance.

(The donor concentration, Nd, determines RI.) A similar

situation exists for a planar Schottky diode.

Equation (8) allows us to determine the capacitance

variation with size. When R ~>> a,

C, = 2~ea = Ce~~e (9)

i.e., C, is proportional to the contact perimeter. In the

opposite limiting case, when RI – a << a, the conventional

parallel-plate capacitance formula is applicable, as ex-

pected:

C’, = 2m-ea2/(R1 – a) = eS/d= CP1,,.T. (lo)

Here S is the contact area and d is the width of the

depletion layer. Fig. 1 shows the variation of C,/ C.~~.

versus RI/ a. As can be seen from the figure, C, -+ C.~g,

when R1/a >4.

For any a /R1 ratio, C, can be presented as the sum of

the planar and edge capacitances:

c,= Cp,anar + Cedge. (11)

As will be shown below, for RI – a <<a, this equation

applies for other geometries, such as a semicylinder (see

Section IV), a round dot, or a metal stripe, if we denote

c ~,ge = pEP (12)

where P is the perimeter of the metal edge and ~ is a

100
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1 I r I
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depletion radius over dot radius

Fig. 1. Variation of C./ C,dge versus RI/a.

numerical coefficient of the order of unity which primarily

depends on the surface curvature.

IV. CAPACITANCE OF A SEMICYLINDER

SCHOTTKY DIODE

For this geometry (see Table I), the depletion layer is a

semicylinder. Integrating (2), we obtain

U=qN~(a2 –r2+2R~ln( r\a))/(4e). (13)

From (13), we find the voltage drop across the depletion

layer:

U1 = qN~(a2 – ‘R~+2R~lnx)/(4c). (14)

The total charge in the depletion layer is equal to

Q = qN,mW(R~ - a2)/2 (15)

where W is the length of the cylinder, which is assumed

to be much larger than R ~. Hence, the device capacitance

C= (dQ/dR1)/(dU1/dR1) = emW/(lnx). (16)

This expression is identical to the expression for a capaci-

tance of two semicylindrical electrodes of radii a and RI

separated by a dielectric; i.e., the presence of the de-

pleted donors does not change the formula for the capaci-

tance. (The donor concentration, Nd, determines RI.)

This is similar to the case of a hemisphere or to the case

of a planar capacitance.

In the limiting case when RI – a << a, the logarithm

expansion into the Taylor series in (16) yields (11) with

~ = T /4. AS was shown in Section H, @= 1 for a hemi-
sphere. The results of the numerical calculations by

Copeland [2] for large-area metal dots and by

Wasserstrom and McKenna [3] for large-area metal stripes

are described by (11) with ~ = 0.75 and ~ = 0.708, respec-

tively. Hence, we expect that (12) with ~ = 0.71 – 0.75 is

applicable to any flat geometry as long as RI – a << a. For

a curved surface, /3 changes to m-/4 for a semicylinder

and to 1 for a hemisphere; i.e., ~ increases with the

surface curvature.
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CAPACITANCES OF SCHOTTKY DIODES OF DIFFERENT GEOMETRIES

Geometry Notation Capacitance
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./-<
?,-

e

J “-....
narrow metal stripe C = z & W/In (2R1’/e/a)

,.6>.s-R!

The edge capacitance, C.dge = ~eP, where P is a perimeter and ~

varies between 0.7 and 1 depending on geometry.

e
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A conventional approach is to interpolate the shape of

the depletion region near the edges of, the metal stripe by

quarter cylinders. This is equivalent to

additional edge charge:

This charge leads to the capacitance:

introducing an

(17)

which is approximately twice as large as the result jpre-

dicted by (12). (This disagreement was already noticed to

Copeland [2].)

V. CAPACITANCE OP A METAL SE~IELLIPSOID

EMBEDDED INTO SEMICONDUCTOR

Different geometries of Schottky diodes are limiting

cases of a semiellipsoid with axes al, az, and aq. For

example, an elliptical dot on a semiconductor surface

corresponds to as = O and a round dot correspond> to

a3 = O, al = a2, We are able to find an analytical solution

for an ellipsoid only in a limiting case of a large depletion

layer (Rl >> al, a2, a3 ). In this case, the boundary of the

depletion layer is still very close to a hemisphere, and the

total charge in the depletion layer is approximately given

by

Q = 2rrqN~R; /3. (19]

Hence, far from the metal ellipsoid (r >> al, az, a3), the

electric potential is approximately the same as for a

hemisphere:

U= (–2Q/r –2~qN~r2/3)/(4m) + Uz. (20)

The first and second terms in the parenthesis of (20)

describe the contribution from the charge, Q, on the

metal surface and the contribution from the charge in the

depletion layer within a hemisphere of radius r, respec-

tively, and Uz is a constant to be found. At distances r

close to the metal, the depletion charge affects the sur-

face distribution of the electric field only slightly. For this

to be true, the charge contained in the depletion klyer

within a hemisphere of radius r must be much smaller

than the total charge, Q, i.e., for r -=z<Z?l. Therefore, very

close to the surface, the solution coincides with that for

an ellipsoid in a dielectric medium without any depletion

charges. In the intermediate region, al, az, a3 << r << RI,

the second term in the parentheses cm the right-hand side

of (20) is still much smaller than the first one. This means

that we have to find a solution which coincides with that

for an ellipsoid in a dielectric medium for r <<RI and

asymptotically approaches the 1/r dependence for large

values of r. The charge distribution, U, on the surface of

a metal ellipsoid in a dielectric medium is given by [4]

a=4~::2a3(:+:+:)-”2 ‘2’)

where xl, X2, and X3 are the coordinates of the elllip-
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soidal surface. The potential created by this charge is

given by

U(~) =( Q/(4me))

where f is the ellipsoidal coordinate, which is related to

the coordinates xl, Xz, and X3 as follows:

and our reference point corresponds to f = O, i.e., U(f =

O)= O. At large distances r >> al, az, as, the Potential

becomes spherically symmetrical and approaches Uz =

U(f+~). For al>a >a~ z ~, we can rewrite the equation

for U, in the following form [5, p. 2191:

U,=(Q/(2me))(a? –q~)-1’2

“F{cos-l(a, /al), [(a? - a~)/(a~ - a~)]l’2) (24)

where F is the elliptic integral of the first kind [5, p. 904].

From (20), we find the voltage drop between the metal

and the boundary of the depletion layer:

U1 = (–2Q/R1 –2mIN#; /3)/(4 me) + Uz. (25)

The last term, U2, in (25) is much larger than the other

terms (in approximately RI/ al times). Hence, the capaci-

tance is given by

C=(dQ/dU1) =(dQ/dU2) =2~~(a~–a~)l’2/

F(cos-1(a3 /al), [(a? – a~)/(a? – a~)]l’2}. (26)

The error of this expression is of the order of al \R1. In

the limiting case of al = a2 = a, (26) reduces to

27r.s(a’ – a~)l’2
c=

cos-’(a, /a)
(27)

(Here we used the relation F(x, 0) = x.) In the limiting
case of a hemisphere (a = a3), (27) reduces to

27re(a2 – a~)l’2
C = Iim

cos-l(a, /a) ‘2r’a
(28)

a-as

which coincides with (9). In the opposite limiting case of a

round metal dot on the semiconductor surface (as = O),

(27) yields

C=4ea. (29)

As is seen from a comparison of (28) and (29), the

capacitances of a hemisphere and a metal dot differ by a

shape-dependent numerical factor.

For an elliptic metal dot with an arbitrary relation

between the axes, we obtain from (24)

27i-eal
c=

~([l-(a, /al)2]l’2j
(30)

where K is a complete elliptic integral [5, p, 905]. In the

limiting case of an elongated elliptic dot (al>> a?), (30)

reduces to

c= ‘
ln(4al/a2) ‘

(31)

Equations (27)–(3 1) describe the situation when a 1>

a2 > as. In the opposite case, which corresponds to an

elongated ellipsoid embedded into the semiconductor

(al < a2 < as), we obtain

C = dQ/dU1 = dQ/dU2 = 2me(a~ – a~)”2/

F(cos-’ (al/a,), [(a? - al)\(a3 - a?)] l’2). (32)

In the limiting case when as>> a~, a 1, we find

C=2~ea, /(ln[4a3/(al+a2)l) (33)

When the ellipsoidal cross section is a circle (al = az), we

obtain from (32)

/(ln[(a3-a2)12+ a,]\a). (34)C= 2me(a~ – a2)1’2

The results for different geometries are summarized in

Table I.

The results obtained above for a round metal dot apply

to the limiting case RI >> a. In the opposite case, R1 << a,

a dot capacitance is given by (11), where, according to the

elementary theory of junctions,

R’l = (2dY1/qNJ1’z. (35)

Below we propose an interpolation formula which maybe

used at any relation between a and RI. First of all, we

introduce an interpolation for the total charge which is

valid in both limiting cases:

Q = qN.~(a’R1+ ~aRf +2 R~/3). (36)

The first term in (36) corresponds to the depletion charge

under the dot, the second term is the correction arising

from the edge charge discussed in Section III, and the

third one describes the charge for the case of a very small

dot. The interpolation formula for the potential is given

by

U1=qN~R;(l +~x2/[3(x +b1)])/’(2e). (37)

Equations (36) and (37) are chosen in such a way that the

resulting expression for the capacitance reproduces the

limiting cases considered in Section III and in this section

for a small dot. The constant bl is an adjustable parame-

ter. This parameter can be determined from a comparison
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Fig. 2. C\ CP,,n,,– 1 versus metal dot radius for a GaAs Schottky
diode (round dot shape) for different doping densities. The built-in
voltage is equal to 0.8 eV, ● = 1.14X 10– 10 F\m, and bl = 1.

with numerical calculations.

tain

c =TEa’(l +2@ +2./)/

Using (36) and (37), we ob-

{Rl[l+ 7X2(3X +4bJ/(6(x + bl)’)]). (38)

Fig. 2 shows C/ CPI,,,, – 1 versus a for a GaAs Schottky

diode. As can be seen from the figure, the fringing effects

are quite important in submicron diodes even for very

high doping densities.

VI. CAPACITANCE OP A NARROW METAL STRIPE ON

SEMICONDUCTOR SURFACE

An approach similar to that used in Section V can be

used in order to calculate the capacitance of a narrow

metal stripe. We are able to find an analytical solution of

this problem only for the limited case of a large depletion

layer (Rl >> a, where a is the half-width of the metal

stripe). In this case, the boundary of the depletion layer is

still very close to a semicylinder and the total charge in

the depletion layer is approximately given by

Q = wqN~R:W/2. (39)

Hence, far from the metal stripe (r>> a), the electric

potential is approximately the same as for a semicylinder:

U= Nd(2R~ln(r/u) – r2)/(4c) + U2. (40)

The first and second terms in the parenthesis of (40)

describe the contributions from the charge, Q, on the

metal surface and from the charge in the depletion layer

within a semieylinder of radius r, respectively, and Uz is a

constant to be found. At distances r << R ~, the depletion

charge affects the surface distribution of the electric field

only slightly. Therefore, very close to the surface, the

solution coincides with that for a metal stripe on a dielec-

tric medium without depletion charges. In the intermedi-

ate region, a << r << RI, the second term in the parenthe-

ses on the right-hand side of (40) is much smaller than the

first term because the depletion charge may still be ne-

glected. This means that we have to find a solution which

coincides with that for a metal stripe on a dielectric

medium for r << RI and asymptotically approaches the

in(r) dependence for large values of r. Following the

same approach that was used to derive (22), we obtain

the following equation for the potential of a stripe for

r << RI:

U= (N.qR;/(4~))~*[r@2 + ~)] “’’dq. (41)

Here < is the elliptical coordinate, which is related to the

coordinates Xz, X3 as follows:

x~/<+x~\(f+a2)=l. (42)

The coordinate xl is along the stripe and the direction of

X3 is perpendicular to the semiconductor surface. From

(41), we find

U= (N,qR~/(2~))ln ((&+ ~~)/a), (43)

At large distances r >> a, the potential becomes cylin-

drically symmetrical and (43) should reduce to U=

2NdR~ in (r/ a)/(4e) + Uz (compare with (40)). Using this

requirement, we can find U2:

U2 = (NdqR~/(2~))ln2. (44)

From (44), we obtain the voltage drop across the deple-

tion layer:

U1 = N~qR~ ln(fi)/(2~) (45)

where y ~= 4x 2/exp (l). Hence, the capacitance (with

a [Rl accuracy) is given by

C = (dQ/dU1) = a-W/in [exp(l)&]. (46)

As may be expected, this equation is fairly similar to

(16) for the capacitance of a metal semicylinder embed-

ded in a semiconductor. In both cases, C = eTW/

In (Const RI /a) and only the constant is different, Hence,

we expect that the same expression is applicable for a

metal stripe of an arbitrary cross section embedded in a

semiconductor.

The results obtained above for a metal stripe apply to

the limiting case RI >> a. In the opposite case, RI < a,

the stripe capacitance is given by (11). Below we propose

an interpolation formula which may be used for any

relation between a and R ~. First, we introduce an inter-

polation for the total. charge which is valid in both Iimiting

cases:

Q=2qN.WaR1{l+X[ (b,+ bC/’4)+b,m-X/’2( l+b, X:)}:)}

(47)

where bC= 2( W + 2a)~ / W apd the constant bz is an

adjustable parameter. The first term in (47) corresponds

to the depletion charge under the dot, the second term is

the correction caused by the edge charge, and the third

term describes the charge for the case of a very narrow

stripe.
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Fig 3. C versus a bias for GaAs Schottky diodes (stripes and round

dot). Curve 1 is calculated by using the planar capacitance formula;
curve 2 corresponds to a metal dot (a = 0.25 pm); curve 3 corresponds

to a square (W/a= 2); curve 4 corresponds to a rectangle (W/a= 4).

The built-in voltage is equal to 0.8 eV, e = 1.14X 10- 10 F/m, bz = 1,

and Nd = 5X 1017 cm–3.

The interpolation formula for the potential is given by

Ul=qNdR~[l+ln(l+ yl)/2]/(2~). (48)

Equations (47) and (48) are chosen in such a way that the

resulting expression for the capacitance reproduces the

limiting cases considered in Section IV and in this section

for a narrow metal stripe. The constant bz can be deter-

mined from a comparison with numerical calculations.

Using (47) and (48), we obtain

3

2

1

0

-- -‘- - parallel plate

our theory

❑ measured

0.2 0.4 0.6 0.8 1,0

dot diameter (~m)

Fig. 4. Measured and calculated dependence of the round-dot GaAs

Schottky barrier diode capacitance on the dot diameter. The top curve is
calculated by using our theory. The bottom curve is calculated by using

the planar capacitance formula. Doping density, 4 X 1017 cm ‘3; zero

applied vohage; built-in voltage, 0.8 eV. The crosses denote measured
data,

We measured C – V characteristics of round-dot GaAs

Schottky barrier diodes by registering the capacitance

between a metal whisker and the wafer with Schottky

diodes and determining the capacitance jump when the

whisker touches the Schottky contact. The experimental

data are compared with our theory in Fig. 4. As can be

seen from the figure, the agreement with the experimen-

tal data is quite reasonable.

~=2EWa l+(3Tb,x +bC)x,/[2(l+b,x)] -b,(2~b,x + bC){x/[2(l+b2x)]}2

RI{l+ln[l+ yl]/2+ yl/[2(1+ yl)]}
(49)

Fig. 3 shows C-V dependence for GaAs Schottky

diodes of the same area but of different geometries. As

can be seen from the figure, the round metal dot has the ACKNOWLEDGMENT

smallest fringing capacitance because it has the smallest
The authors would like to thank K. Zelin for help with

perimeter. The fringing capacitance increases for longer
the c – ~ measurements and T. Kabir for his help in

and narrower stripes. The capacitance modulation is the

largest for the round dot.
preparing this manuscript.

VII. RESULTS AND DISCUSSION

Our results can be applied to a large variety of Schottky

diodes (see Table I). Our theory is also applicable to p–n

junctions. Most Schottky diodes have shapes of metal dots

or metal stripes. However, other shapes may be relevant,

for example, for diffused or ion-implanted p–n junctions.

Also, with a trivial change (C ~ l/R and ~ ~ cr, where a

is the conductivity and R the resistance), our results can

be applied for calculating resistances for different geome-

tries.
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