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Capacitance—Voltage Characteristics of
Microwave Schottky Diodes

Boris Gelmont, Michael Shur, Fellow, IEEE, and Robert J, Mattauch, Fellow, IEEE

Abstract —The capacitance of small-area microwave Schottky
diodes is strongly affected by the edge effect, which is not
adequately described by existing analytical models. Based on an
analytical solution of Poisson’s equation, we calculated capaci-
tances of metal circular dots and metal stripes on the surface of
a doped semiconductor material. When the dimensions of the
dot or stripe are much larger than the depletion region, the
results are reduced to the conventional formula for a parallel-
plate capacitor. In the opposite limit, the overall capacitance is
determined by the edge effect. This edge capacitance is propor-
tional to the device periphery, with the coefficient of proportion-
ality dependent on the shape of the metal. In the most interest-
ing case of a round metal dot, the edge capacitance is given by
C = 4¢a, where € is the dielectric permittivity of the semicon-
ductor and a is the radius of the metal dot. The parallel-plate
component of the device capacitance is modulated by the ap-
plied voltage; the edge component is nearly independent of the
applied voltage. Hence, the largest capacitance modulation is
achieved in devices with the smallest ratio of the device periph-
ery over the device area, which has the smallest edge effect. The
measured capacitances of small round GaAs Schettky barrier
diodes are in reasonable agreement with the results of our
calculation.

I. INTRODUCTION

S device sizes are scaled down, the edge effects play

an increasingly important role in determining the
capacitance of semiconductor devices with Schottky barri-
ers [1]. At the same time, existing analytical models are
based on the equation for a parallel-plate capacitance
(with some corrections) and they only adequately describe
large-area devices.

Wasserstrom and McKenna [2] and Copeland [3] re-
ported the results of numerical calculations of the capaci-
tances of metal dots and stripes on a semiconductor
surface. They also proposed an analytical interpolation
formula which is valid for relatively large area devices
when the characteristic size, a, of the metal contact is
much larger than the depth of the depletion region, R;.

In this paper, we find analytical solutions for a metal
hemisphere, a metal semicylinder, a metal stripe, and a
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metal ellipsoid for a limiting case of a very small ellipsoid
(with dimensions smaller than the depth of the depletion
layer, R,). In the limiting case aj,a, > a;, where a, and
a, are ellipsoid axes in the plane of the semiconductor
surface and a, is an ellipsoid axis perpendicular to the
semiconductor surface, this geometry corresponds to an
important limiting case of an elliptical metal dot on the
semiconductor surface (or a round metal dot when a, =
a,). In the opposite limiting case (a,,a, < a,), this solu-
tion describes a conductive needle piercing the semicon-
ductor material. Our analytical solutions allows us to
propose interpolation formulas for practical geometries of
a metal dot and a metal stripe which are accurate in two
limiting cases of large and small characteristic metal sizes
(a> R, and a< R)) and give reasonable results for
intermediate case when a is of the order of R;.

I1. Basic ASSUMPTIONS

We assume that the semiconductor is doped with shal-
low ionized donors with concentration N,. The dielectric
permittivity, e, of the semiconductor is much larger than
the dielectric permittivity of vacuum. This allows us to
neglect the normal component of the electric field at the
semiconductor interface.

Our calculations involve the solution of Poisson’s equa-
tion for different geometries in spherical and cylindrical
coordinate systems:
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Here U is the electric potential and g is the electronic
charge. Once Poisson’s equations are solved, we can find
the total charge in the depletion layer, Q. The voltage
drop across the depletion region is given by

U,=U(R,)~U(a) (3)
where R, is the radius of the depletion region, r is the
distance from the center of the contact, a is the radius of

the hemisphere, and U(a) is the semiconductor potential
at the boundary with the metal. (We choose U(a) as a
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reference point, i.c., U(a) = 0).) The applied bias is given
by

V. =Vu—U

apphed — (4)

where V,; is the built-in voltage of the Schottky barrier (a

positive sign of ¥, .4 corresponds to the forward bias).
II1. CapACITANCE OF A HEMISPHERICAL

ScuorTKY DIODE

For a spherical Schottky diode, the depletion layer is a
hemisphere. Integrating (1) and taking into account that
dU /dr|,-r,= 0, we find the potential distribution in the
depletion layer:

U=gNy(a>—r>=2R}/r +2R} /a)/(6€).  (5)

From (5), we find the voltage drop across the depletion
layer:

U, = gN,a*(x —1)*(2x +1) /(6€) (6)

where x = R, /a. The total charge in the depletion layer
is equal to

Q=2mwgN,(R} ~a%) /3. (7)

Hence, the device capacitance, C,, can be calculated as
follows:

C,=(dQ/dR,)/(dU, /dR,) =2meaR, /(R,~a). (8)

This expression is identical to the expression for a capaci-
tance of two hemispherical clectrodes of radii a and R,
separated by a dielectric. The presence of the depleted
donors does not change the formula for the capacitance.
(The donor concentration, N, determines R;.) A similar
situation exists for a planar Schottky diode.

Equation (8) allows us to determine the capacitance
variation with size. When R > a,

C,=2mea=C (9)

i.e., C, is proportional to the contact perimeter. In the
opposite limiting case, when R, — a < g, the conventional
parallel-plate capacitance formula is applicable, as ex-
pected:

edge

C,~2mea’/(R,—a)=eS/d=C (10)

Here S is the contact area and d is the width of the
depletion layer. Fig. 1 shows the variation of C,/C
versus R, /a. As can be seen from the figure, C, — C
when R, /a> 4.

For any a /R, ratio, C, can be presented as the sum of
the planar and edge capacitances:

C,=Cpe+C

planar *

edge
edge

(11)

As will be shown below, for R, —a < a, this equation
applies for other geometries, such as a semicylinder (see
Section 1V), a round dot, or a metal stripe, if we denote

Ccdge = :BEP (12)

where P is the perimeter of the metal edge and B is a
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Fig. 1. Variation of C; / Ceqq versus R, /a.

numerical coefficient of the order of unity which primarily
depends on the surface curvature.

IV. CAPACITANCE OF A SEMICYLINDER
ScHortKY DI10DE

For this geometry (see Table I), the depletion layer is a
semicylinder. Integrating (2), we obtain

U=gN,(a*—r*+2R}In(r/a))/(4e). (13)

From (13), we find the voltage drop across the depletion
layer:

U =gN,(a*— R} +2R}Inx)/(4¢). (14)
The total charge in the depletion layer is equal to
Q =gN,mW(R} —a*)/2 (15)

where W is the length of the cylinder, which is assumed
to be much larger than R;. Hence, the device capacitance

C=(dQ/dR,)/(dU,/dR,)=emW /(Inx). (16)

This expression is identical to the expression for a capaci-
tance of two semicylindrical electrodes of radii a and R,
separated by a dielectric; i.e., the presence of the de-
pleted donors does not change the formula for the capaci-
tance. (The donor concentration, N, determines R;.)
This is similar to the case of a hemisphere or to the case
of a planar capacitance.

In the limiting case when R, —a < aq, the logarithm
expansion into the Taylor series in (16) yields (11) with
B =1 /4. As was shown in Section II, 8 =1 for a hemi-
sphere. The results of the numerical calculations by
Copeland [2] for large-area metal dots and by
Wasserstrom and McKenna [3] for large-area metal stripes
are described by (11) with 8= 0.75 and 8 = 0.708, respec-
tively. Hence, we expect that (12) with 8 =0.71—0.75 is
applicable to any flat geometry as long as R, — a < a. For
a curved surface, 8 changes to 7 /4 for a semicylinder
and to 1 for a hemisphere; i.e., B increases with the
surface curvature.
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TABLE 1
CAPACITANCES OF SCHOTTKY DI10DES OF DIFFERENT GEOMETRIES
Geometry Notation Capacitance
2”0 <o T

planar ‘? C=2eaW/Rg

Ry

b
hemisphere

C= 2recaRy/(R1—a)

semi-cylinder

Radius =@
Radius = fiy

C=ne W/ In(Ry/a)

round dyot

23,

C= 4ea

semi-ellipsoid

21;3(312 - 322)1/2

~ F{Cosl(az/an);
[(a12-a22)/(a12 - a32)]1/2}

semi-ellipsoid with

round cross-section

2me (a2 — a32)12

Cos—1(az/a)

elliptic- metal dot

21\:sa1'
C=

K([1 - (a2/a1)211/2)

elongated elliptic dot

2,

21 € a)

In (4a1/az2)

elongated semi-

ellipsoid

C=2neag/in [4a3/(a1+22)]

narrow metal stripe

C= e W/in 2R1Ve/a)

The edge capacitance, C

edge

= BeP, where P is a perimeter and S

varies between 0.7 and 1 depending on geometry.
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A conventional approach is to interpolate the shape of
the depletion region near the edges of the metal stripe by
quarter cylinders. This is equivalent to 1ntroducmp an
additional edge charge:

Qedge = qudW(WR%/A‘)
This charge leads to the capacitance:
edge (dQedge /de)/(dU /dR ) 7TEW 18)

Wthh is approximately twice as large as the result pre-
dicted by (12). (This disagreement was already noticed to
Copeland [2].)

(17)

V. CAPACITANCE OF A METAL SEMIELLIPSOID
EMBEDDED INTO SEMICONDUCTOR |

Different geometries of Schottky diodes are limiting
cases of a semiellipsoid with axes a;, a,, and a,. For
example, an elliptical dot on a semiconductor surface
corresponds to a;=0 and a round dot corresponds to
a;=0, a, = a,. We are able to find an analytical solution
for an ellipsoid only in a limiting case of a large depletion
layer (R, > ay, a,,a3). In this case, the boundary of the
depletion layer is still very close to a hemisphere, and the
total charge in the depletion layer is approximately given
by X

(19

Hence, far from the metal ellipsoid (r >>va1,a2, 3), the
electric potential is apprommately the same as for a
hemisphere:

U=(~20/r-2mgN, r2/3) /(4me) +U,.

Q=2mgN,R} /3.

(20)

The first and second terms in the parenthesis of 20
describe the. contribution from the charge, Q, on the
metal surface and the contribution from the charge in the -
depletion layer within a hemisphere of radius r, respec-
tively, and U, is a constant to be found. At distances r
close to the metal, the depletion charge affects the sur-
face distribution of the electric field only slightly. For this
to be true, the charge contained in the depletion layer
within a hemisphere of radius r must be much smaller
than the total charge, @, i.e., for r < R,. Théerefore, very
close to the surface, the solution coincides with that for
an ellipsoid in a dielectric medium without any depletion
charges. In the intermediate region, a,,a,,d; <r < R,

‘the second term in the parentheses on the right-hand side

of (20) is still much smaller than the first one. This means
that we have to find a solution which. coincides with that
for an ellipsoid in a dielectric medium for r < R, and
asymptotically approaches the 1/r dependence for large
values of ». The charge distribution, o; on the surface of
a metal ellipsoid in a dielectric medium is given by [4]

-1/2
20 xi x2 X2 /
o=——"-—|3+—5+—3 (21)
‘ 4maa,a, \ a; a;  a

where x;, Xx,, and x; are the coordinates of the ellip-
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soidal surface. The potential created by this charge is
given by

U(¢)=(Q/(4me))
'fog[(“% +m) (a3 + n)(aj+ 77)] s dn (22)

where £ is the ellipsoidal coordinate, which is related to
the coordinates x;, x,, and x, as follows:

2
xi x5 X3

+ + =
al+é aj+& ai+¢

1 (23)

and our reference point corresponds to £ =0, i.e., U(£ =
0)=0. At large distances r>a,,a,,a,, the potential
becomes spherically symmetrical and approaches U, =
U(¢ »»). For a, > a, > a;, we can rewrite the equation
for U, in the following form [5, p. 219]:

U,=(Q/(2me)) (a2 —a3) "

_F{Cos-l(a3/a1)7[(a%—— a3)/(af— ag)]l/z} (24)

where F is the elliptic integral of the first kind [5, p. 904].
From (20), we find the voltage drop between the metal
and the boundary of the depletion layer:

Uy=(-20/R,~27gN,R} /3)/(4me) +Uj. (25)

The last term, U,, in (25) is much larger than the other
terms (in approximately R, /a, times). Hence, the capaci-
tance is given by

1/2

C=(dQ/dUy) ~(dQ /dU,) = 2me(ai - a3)"/
- 1/2
F{cos Yas/a,),|(a} - a3)/(ai — a3)] } (26)
The error of this expression is of the order of a; /R;. In
the limiting case of a, = a, = a, (26) reduces to

2me(a®—a3)””

cos !(ay/a)

(Here we used the relation F(x,0)= x.) In the limiting
case of a hemisphere (a = a5), (27) reduces to

(27)

2)1/2

(28)

which coincides with (9). In the opposite limiting case of a
round metal dot on the semiconductor surface (a; = 0),
(27) yields

C = 4ea. (29)

As is seen from a comparison of (28) and (29), the
capacitances of a hemisphere and a metal dot differ by a
shape-dependent numerical factor.

For an elliptic metal dot with an arbitrary relation
between the axes, we obtain from (24)

2mea,
K([l— (az/a1)2]1/2)

where K is a complete elliptic integral [5, p. 905]. In the
limiting case of an elongated elliptic dot (a, > a,), (30)
reduces to

C:

(30)

2mea;
C=——.
In(4a,/a,)

Equations (27)-(31) describe the situation when a, >
a, > a,. In the opposite case, which corresponds to an
elongated ellipsoid embedded into the semiconductor
(a; < a, < aj), we obtain

(31)

C=dQ/dU,~dQ/dU, =2me(al—a3)""/

2\11/2
F<cos‘1 (a,/as), [(a% - a%)/(a% - a;)] / } (32)
In the limiting case when a; > a,,a,, we find

C=2mea, /(In[4as /(a, + a,)]). (33)
When the ellipsoidal cross section is a circle (a; = a,), we
obtain from (32)

C=2me(a3— a2)1/2/<1n [(a% — a2)1/2+ a3]/a}. (34)

The results for different geometries are summarized in
Table I.

The results obtained above for a round metal dot apply
to the limiting case R; > a. In the opposite case, R, < a,
a dot capacitance is given by (11), where, according to the
elementary theory of junctions,

R, =(2eU, /qu)l/2~ (35)

Below we propose an interpolation formula which may be
used at any relation between a and R,. First of all, we
introduce an interpolation for the total charge which is
valid in both limiting cases:

Q = gN,m(a’R, + BaR} +2R; /3). (36)

The first term in (36) corresponds to the depletion charge
under the dot, the second term is the correction arising
from the edge charge discussed in Section III, and the
third one describes the charge for the case of a very small
dot. The interpolation formula for the potential is given
by

U, =gN,R}(1+7x*/[3(x +b))])/(2¢).  (37)

Equations (36) and (37) are chosen in such a way that the
resulting expression for the capacitance reproduces the
limiting cases considered in Section III and in this section
for a small dot. The constant b, is an adjustable parame-
ter. This parameter can be determined from a comparison
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Fig. 2. C/Cppapa —1 versus metal dot radius for a GaAs Schottky

diode (round dot shape) for different doping densities. The built-in
voltage is equal to 0.8 eV, € =1.14x107!° F/m, and b, =1.

with numerical calculations. Using (36) and (37), we ob-
tain

C=mea’(1+2Bx+2x%)/

(Ri[1+7x2(3x +4b)) /(6(x + b))} (38)

Fig. 2 shows C/C ., — 1 versus a for a GaAs Schottky
diode. As can be seen from the figure, the fringing effects
are quite important in submicron diodes even for very
high doping densities.

VI. CAPACITANCE OF A NARROW METAL STRIPE ON
SEMICONDUCTOR SURFACE

An approach similar to that used in Section V can be
used in order to calculate the capacitance of a narrow
metal stripe. We are able to find an analytical solution of
this problem only for the limited case of a large depletion
layer (R;> a, where a is the half-width of the mietal
stripe). In this case, the boundary of the depletion layer is
still very close to a semicylinder and the total charge in
the depletion layer is approximately given by

Q = maN,RIW /2. (39)

Hence, far from the metal stripe (r > a), the electric
potential is approximately the same as for a semicylinder:

U= N,(2R{In(r/a)=r?)/(4e)+U,.  (40)

The first and second terms in the parenthesis of (40)
describe the contributions from the charge, Q, on the
metal surface and from the charge in the depletion layer
within a semicylinder of radius r, respectively, and U, is a
constant to be found. At distances r < R, the depletion
charge affects the surface distribution of the electric field
only slightly. Therefore, very close to the surface, the
solution coincides with that for a metal stripe on a dielec-
tric medium without depletion charges. In the intermedi-
ate region, @ << r << Ry, the second term in the parenthe-
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ses on the right-hand side of (40) is much smaller than the
first term because the depletion charge may still be ne-
glected. This means that we have to find a solution which
coincides with that for a metal stripe on a dielectric
medium for » < R, and asymptotically approaches the
In(#) dependence for large values of r. Following the
same approach that was used to derive (22), we obtain
the following equation for the potential of a stripe for
r < R;:

U=(quRf/(4e))[j[n(a2+n)]’mdn. (41)

Here ¢ is the elliptical coordinate, which is related to the
coordinates x,,x, as follows:

xi/E+x3/(6+a%)=1. (42)
The coordinate x, is along the stripe and the direction of

x5 is perpendicular to the semiconductor surface. From
(41), we find

U= (quRf/(ze))ln((\/EJr Jé+a? )/a) (43)

At large distances r > a, the potential becomes cylin-
drically symmetrical and (43) should reduce to U=
2N,R?1In(r /a)/(4€)+ U, (compare with (40)). Using this
requirement, we can find U,:

U2=(quRf/(2e))ln2. (44)

From (44), we obtain the voltage drop across the deple-
tion layer:

U= NygR?In(y/y, )/(2¢) (45)

where y,=4x%/exp(1). Hence, the capacitance (with
a /R, accuracy) is given by

C=(dQ/dU,) =~ enW /In[exp(1)y/y;].  (46)
As may be expected, this equation is fairly similar to
(16) for the capacitance of a metal semicylinder embed-
ded in a semiconductor. In both cases, C=emW/
In(Const R, /a) and only the constant is different. Hence,
we expect that the same expression is applicable for a
metal stripe of an arbitrary cross section embedded in a
semiconductor.

The results obtained above for a metal stripe apply to
the limiting case R,>> a. In the opposite case, R; < a,
the stripe capacitance is given by (11). Below we propose
an interpolation formula which may be used for any
relation between a and R,. First, we introduce an inter-
polation for the total charge which is valid in both limiting
cases:

Q=2gN,WaR {1+x[(b,+b, /4) +bymx /2] /(1+b,x)}
(47)

where b, =2(W +2a)B/W and the constant b, is an
adjustable parameter. The first term in (47) corresponds
to the depletion charge under the dot, the second term is
the correction caused by the edge charge, and the third
term describes the charge for the case of a very narrow
stripe.
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Fig. 3. C versus a bias for GaAs Schottky diodes (stripes and round
dot). Curve 1 is calculated by using the planar capacitance formula;
curve 2 corresponds to a metal dot (a = 0.25 um); curve 3 corresponds
to a square (W/a =2); curve 4 corresponds to a rectangle (W/a = 4).
The built-in voltage is equal to 0.8 eV, e =1.14x107'% F/m, b, =1,
and N;=5%10'7 cm ™.

The interpolation formula for the potential is given by

UlqudR%[l—'_ln(l_'—yl)/z]/(ze)' (48)
Equations (47) and (48) are chosen in such a way that the
resulting expression for the capacitance reproduces the
limiting cases considered in Section IV and in this section
for a narrow metal stripe. The constant b, can be deter-
mined from a comparison with numerical calculations.
Using (47) and (48), we obtain

3
J ------ parallel plate
=== our theory

g 2 4 s measured
[+I]
&
=
3
]
2
] 1 7
(5]

0+ ' ' ‘

0.2 0.4 0.6 0.8 1.0

dot diameter (um)

Fig. 4. Measured and calculated dependences of the round-dot GaAs
Schottky barrier diode capacitance on the dot diameter. The top curve is
calculated by using our theory. The bottom curve is calculated by using

the planar capacitance formula. Doping density, 4Xx10'7 em~3; zero

applied voltage; built-in voltage, 0.8 ¢V. The crosses denote measured
data.

We measured C-V characteristics of round-dot GaAs
Schottky barrier diodes by registering the capacitance
between a metal whisker and the wafer with Schottky
diodes and determining the capacitance jump when the
whisker touches the Schottky contact. The experimental
data are compared with our theory in Fig. 4. As can be
seen from the figure, the agreement with the experimen-
tal data is quite reasonable.

C=2eWa

Fig. 3 shows C-V dependences for GaAs Schottky
diodes of the same area but of different geometries. As
can be seen from the figure, the round metal dot has the
smallest fringing capacitance because it has the smallest
perimeter. The fringing capacitance increases for longer
and narrower stripes. The capacitance modulation is the
largest for the round dot.

VII. RESULTS AND Discussion

Our results can be applied to a large variety of Schottky
diodes. (see Table I). Our theory is also applicable to p—n
junctions. Most Schottky diodes have shapes of metal dots
or metal stripes. However, other shapes may be relevant,
for example, for diffused or ion-implanted p—n junctions.
Also, with a trivial change (C - 1/R and € — o, where o
is the conductivity and R the resistance), our results can
be applied for calculating resistances for different geome-
tries.

14 (3mbyx + b)) x /[2(1+ byx)| = by(2mbyx + b,){x /[2(1+ b, x)] )
Rf{1+In[1+y,1/2+y, /[2(1+ y))]} '

(49)
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